zur Startseite

Forschung - Lehrstuhl für Hydromechanik und Hydrosystemmodellierung

Probabilistische Risikoanalyse für CO2-Speicherung mit Hilfe massiver stochastischer Modellreduktion
Projektleiter:Dr. Sergey Oladyshkin, Prof. Dr.-Ing. Wolfgang Nowak, M.Sc.
Stellvertreter:apl. Prof. Dr.-Ing. Holger Class, Prof. Dr.-Ing. Rainer Helmig
Wissenschaftliche Mitarbeiter:Dr. Sergey Oladyshkin
Projektdauer:1.1.2009 - 31.12.2011
Finanzierung:SimTech (Exzellenzinitiative des Bundes und der Länder)
Kommentar:

Dieses Projekt gehört zum Forschungsschwerpunkt:
Modellierung der Mehrphasen-Mehrkomponenten-Prozesse bei der Sequestrierung von CO2 im Untergrund

Publikationen: Link

Zusammenfassung:

Large-scale industrial CO2 injection into deep geologic formations bears an inherent risk of leakage back into atmosphere. The potential of CO2 injection as large-scale interim solution will vastly depend on our ability to quantify its uncertainties and risks. Up to date, field experience is limited to medium-scale test sites, and no probabilistic risk assessment has been applied. Current numerical simulation models are inadequate for stochastic simulation techniques, because they are too expensive for stochastic approaches based on repeated simulation. Even single deterministic simulations require parallel high performance computing. Because the involved multiphase flow processes of CO2 in porous media have a significantly nonlinear character, the problem is too non-linear for quasi-linear and other simplified stochastic tools. In the proposed approach, stochastic simulation and probabilistic risk assessment of CO2 storage scenarios is based on massive stochastic model reduction via polynomial chaos expansion in variable model parameters. The model response surface is projected onto a higher-order orthogonal basis of polynomials, allowing for non-linear propagation of model uncertainties onto the predicted risk. The variable parameters include uncertain model parameters, such as porosity, permeability, temperature and geometry, and a list of design and control parameters. The chosen degree of the polynomial balances between computational effort and accuracy. After an initial computational effort for model reduction, the reduced model is vastly faster than the original. Probabilistic risk assessment can then be performed at ease. The same reduced model will aid in follow-up tasks, such as the optimization of site exploration and engineering design. The long-time goal is application to site management, including real-time control.