

A balance between accuracy and effort for modeling biomineralization

IAMG at Freiberg, September 7th 2015 Johannes Hommel,

Anozie Ebigbo, Robin Gerlach, Alfred B. Cunningham, Rainer Helmig, Holger Class

Motivation

- Increased use of the subsurface injecting or extracting fluids.
- Exclusive and storage uses require separation.
- \rightarrow sealing of leakage pathways is important
- Reactive transport models are needed to optimize the sealing.
- But on the relevant field scale, reactive transport models quickly become prohibitively expensive in terms of the computational effort!

www.hydrosys.uni-stuttgart.de

Outline

Model concept

Methods to reduce computational effort:

- Model simplifications
- Sequential approach

Results

University of Stuttgart

Germany

Mass balance equations

Mass balance equation for components in both phases:

$$\sum_{\alpha} \frac{\partial}{\partial t} \left(\phi \rho_{\alpha} x_{\alpha}^{\kappa} S_{\alpha} \right) + \nabla \cdot \left(\rho_{\alpha} x_{\alpha}^{\kappa} \mathbf{v}_{\alpha} \right) - \nabla \cdot \left(\rho_{\alpha} \mathbf{D}_{\alpha} \nabla x_{\alpha}^{\kappa} \right) = q^{\kappa}$$
$$\kappa \in \{ \mathsf{w}, \mathsf{C}_{\mathsf{tot}}, \mathsf{O}_{2} \}; \alpha \in \{ \mathsf{w}, \mathsf{n} \}$$

Mass balance equation of components exclusively in the water phase:

$$\frac{\partial}{\partial t} \left(\phi \rho_{\mathsf{W}} x_{\alpha}^{\kappa} S_{\mathsf{W}} \right) + \nabla \cdot \left(\rho_{\alpha} x_{\mathsf{W}}^{\kappa} \mathbf{v}_{\mathsf{W}} \right) - \nabla \cdot \left(\rho_{\mathsf{W}} \mathbf{D}_{\mathsf{W}} \nabla x_{\mathsf{W}}^{\kappa} \right) = q^{\kappa}$$

$$\kappa \in \{ \mathsf{Na}, \, \mathsf{CI}, \, \mathsf{Ca}, \, \mathsf{bio}, \, \mathsf{substrate}, \, \mathsf{N}_{\mathsf{tot}}, \, \mathsf{urea} \}$$

Mass balance for the immobile components / solid phases:

$$ho_\lambda rac{\partial \phi_\lambda}{\partial t} = q^\lambda \qquad \lambda \in \{ ext{biofilm, calcite}\}$$

Sources and sinks q^{κ} and q^{λ} are due to reactions or microbial processes.

Outline

Model concept

Methods to reduce computational effort:

- Model simplifications
- Sequential approach

Results

Model simplifications

For the globally implicit approach, the **full complexity model (FC)** and two simplifications are investigated:

Initial biofilm (IB): Instead of an inoculation period, the model is started at a later time with a pre-established biofilm. The component "suspended biomass" is neglected, as suggested in [1], resulting in a reduced number of unknowns.

Simple chemistry (SC): Activities and saturation index are neglected, the precipitation rate is assumed to be equal to the ureolysis rate as in e.g. [2]. This model has the full set of unknowns.

[1] J. Hommel, E. Lauchnor, R. Gerlach, A. B. Cunningham, A. Ebigbo, R. Helmig, H. Class: Investigating the influence of the initial biomass distribution and injection strategies on biofilm-mediated calcite precipitation in porous media, submitted to Transp. Porous Med., 2015
 [2] W. K. van Wijngaarden, F. J. Vermolen, G. A. M. Meurs, and C. Vuik: A mathematical model for Biogrout, Comput. Geosci., 2013, 17(3), 463–478, doi:10.1007/s10596-012-9316-0.

Sequential approach:

mass balances split into transport and reaction

• Mass balance, fully implicit:

$$\sum_{\alpha} \frac{\partial}{\partial t} \left(\phi \rho_{\alpha} x_{\alpha}^{\kappa} S_{\alpha} \right) + \nabla \cdot \left(\rho_{\alpha} x_{\alpha}^{\kappa} \mathbf{v}_{\alpha} \right) - \nabla \cdot \left(\rho_{\alpha} \mathbf{D}_{\alpha} \nabla x_{\alpha}^{\kappa} \right) = q^{\kappa}$$

Mass balance, transport only:

$$\sum_{\alpha} \frac{\partial}{\partial t} \left(\phi \rho_{\alpha} x_{\alpha}^{\kappa} S_{\alpha} \right) + \nabla \cdot \left(\rho_{\alpha} x_{\alpha}^{\kappa} \mathbf{v}_{\alpha} \right) - \nabla \cdot \left(\rho_{\alpha} \mathbf{D}_{\alpha} \nabla x_{\alpha}^{\kappa} \right) = 0$$

$$\Rightarrow \text{ No reactive sources in the}$$

• Mass balance, reaction only:

$$\sum_{\alpha} \frac{\partial}{\partial t} \left(\phi \rho_{\alpha} x_{\alpha}^{\kappa} S_{\alpha} \right) = q^{\kappa}$$

→ Only local information is needed in the reaction subproblem

transport subproblem

Sequential approach:

mass balances split into transport and reaction

• Mass balance of solid phases, fully implicit:

$$\rho_{\lambda} \frac{\partial \phi_{\lambda}}{\partial t} = q^{\lambda} \qquad \lambda \in \{\text{biofilm, calcite}\}$$

• Mass balance of solid phases, transport only:

$$\rho_{\lambda} \frac{\partial \phi_{\lambda}}{\partial t} = 0$$

→ Solid phases disappear in the transport subproblem

• Mass balance of solid phases, reaction only:

$$\rho_{\lambda} \frac{\partial \phi_{\lambda}}{\partial t} = q^{\lambda}$$

Sequential approach used

Sequential non-iterative coupling scheme.

$$CE = \max \left(\frac{2 |p_{w,transp} - p_{w,chem}|}{p_{w,transp} + p_{w,chem}}, |x_{w,transp}^{\kappa} - x_{w,chem}^{\kappa}| \right)$$

$$\stackrel{\text{choose time step based on previous error}}{\longrightarrow} \xrightarrow{\text{Transport subproblem time steps}} \xrightarrow{\text{evaluate coupling error, exchange solutions}}$$

(Based on literature)

- Advantages:
 - easy to implement
 - suitable for large scale
 - suitable for advection dominated systems like the vicinity of an injection well
- Disadvantages:
 - time step size constraints or increasing error due to the sequential calculation
- Other sequential schemes are yet to be tested

www.hydrosys.uni-stuttgart.de

Outline

Model concept

Methods to reduce computational effort:

- Model simplifications
- Sequential approach

Results

University of Stuttgart

Germany

Test setup: Radial Flow

Original experiment shows heterogeneities

 \rightarrow Using the comparison of homogeneous and heterogeneous case (estimated using [3]) as a base error.

Error:

$$\sqrt{\Sigma_{i=1}^{\text{nodes}} (\phi_{c,\text{homo},i} - \phi_{c,\text{hetero},i})^2}$$

 \rightarrow Error hetero-homo = 0.0033

[3] R. F. Carsel, R. S. Parrish: Developing joint probability distributions of soil water retention characteristics, Water Resour. Res., 1988, 24(5), 755-769.

Results: model simplification

000

Results: model simplification

nu

Results: model simplification

International Research

Training Group

000

* Error:
$$\sqrt{\sum_{i=1}^{\text{nodes}} (\phi_{c,i} - \phi_{c,\text{ref},i})^2}$$

Reference: homogeneous, full complexity, Newton 10⁻⁸, fine discretization (dt and dx)

Error hetero-homo = 0.0033

Results: sequential approach

Results: sequential approach

Results: sequential approach

Reference: homogeneous, globally implicit, full complexity, Newton 10⁻⁸, fine discretization

International Research

Training Group

0 0 0 0 0

Summary

- Sequential (non-iterative) approach:
 - large errors and underestimation of the precipitated calcite

- Simplification of the globally implicit model:
 - Simple chemistry leads to a significant reduction of CPU time.
 - Relaxing the Newton's convergence criteria (a bit) has similar effects as SC, the error being smaller than for SC, but the results get "noisy".
 - Initial biofilm model does not reduce the CPU time significantly.

University of Stuttgart

Germany

FC, N 10⁻⁴

4861

0.0065

0.0033

Summary

- Sequential (non-iterative) approach:
 - large errors and underestimation of the precipitated calcite

- Simplification of the globally implicit model:
 - Simple chemistry leads to a significant reduction of CPU time.
 - Relaxing the Newton's convergence criteria (a bit) has similar effects as SC, the error being smaller than for SC, but the results get "noisy".
 - Initial biofilm model does not reduce the CPU time significantly.
- To do:
 - Test other sequential approaches and a one-phase model.

Thank you for your attention!

All simulations were done using DuMu^X

For further information on DuMu^x, see: http://dumux.org/

A. Ebigbo, A.J. Philipps, R. Gerlach, R. Helmig, A.B. Cunningham, H. Class,
L.H. Spangler: Darcy-scale modeling of microbially induced carbonate mineral precipitation in sand columns. Water Resources Research, 2012, 48 WO7519, doi:10.1029/2011WR011714

A.J. Philipps, R. Gerlach, E. Lauchnor, A.C. Mitchell, A.B. Cunningham, L.H. Spangler: **Engineered applications of ureolytic biomineralization: a review**. Biofouling, 2013, 29(6) 715-733, doi:10.1080/08927014.2013.796550

J. Hommel, E. Lauchnor, A.J. Philipps, R. Gerlach, A.B. Cunningham, R. Helmig, A. Ebigbo, H. Class: **A revised model for microbially induced calcite precipitation: improvements and new insights based on recent experiments**. Water Resources Research, 2015, 51(5) 3695-3715, doi:10.1002/2014WR016503

University of Stuttgart

Germany

Model concept: Scale

Model concept: Important reactions

The bacterium *Sporosarcina pasteurii* produces the enzyme urease. Urease catalyzes the hydrolysis of urea, which produces ammonia and leads to an increase in pH.

$$CO(NH_2)_2 + 2H_2O \xrightarrow{\text{urease}} 2NH_3 + H_2CO_3$$

 $H_2CO_3 \longleftrightarrow HCO_3^- + H^+$

 $HCO_3^- \longleftrightarrow CO_3^{2-} + H^+$

 $2 \operatorname{NH}_{4}^{+} \longleftrightarrow 2 \operatorname{NH}_{3} + 2 \operatorname{H}^{+}$

 $Ca^{2+} + CO_3^{2-} \longleftrightarrow CaCO_3 \downarrow$

ureolysis

University of Stuttgart

Germanv

dissociation of carbonic acid

dissociation of bicarbonate ion

dissociation of ammonia

calcite precipitation/dissolution

\rightarrow in the presence of calcium ions, the rise in pH due to ureolysis will drive the precipitation of calcite.

International Research Training Group

www.hydrosys.uni-stuttgart.de

Sources & sinks: Biomass

Suspended biomass:	$q^{ m bio}$	—	$r_{\mathrm{growth}}^{\mathrm{bio}} - r_{\mathrm{decay}}^{\mathrm{bio}} - r_{\mathrm{attach}} + r_{\mathrm{detach}}$
Biofilm:	q^{biofilm}	=	$r_{ m growth}^{ m biofilm} - r_{ m decay}^{ m biofilm} + r_{ m attach} - r_{ m detach}$
Growth:	$r_{ m growth}^{ m bio} \ r_{ m growth}^{ m biofilm}$	=	$\mu\phi S_{ m w}C_{ m w}^{ m bio}$ $\mu\phi_{ m biofilm} ho_{ m biofilm}$
Growth coefficient:	μ	—	$\mu_{\max} Yield \frac{C_{w}^{\text{substrate}}}{K_{\text{substrate}} + C_{w}^{\text{substrate}}} \cdot \frac{C_{w}^{\text{O}_{2}}}{K_{\text{O}_{2}} + C_{w}^{\text{O}_{2}}}$
Decay:	$r_{ m decay}^{ m bio} \ r_{ m decay}^{ m biofilm}$	=	$k_{ m decay}^{ m bio} \phi S_{ m w} C_{ m w}^{ m bio} \ k_{ m decay}^{ m biofilm} \phi_{ m biofilm} ho_{ m biofilm}$
Attachment: Detachment:	$r_{ m attach} \ r_{ m detach}$	=	$ \begin{pmatrix} c_{\mathrm{a},1}\phi_{\mathrm{biofilm}} + c_{\mathrm{a},2} \end{pmatrix} C_{\mathrm{w}}^{\mathrm{bio}}\phi S_{\mathrm{w}} \\ \left(c_{\mathrm{d},1} \left(\nabla p_{\mathrm{w}} \phi S_{\mathrm{w}} \right)^{0.58} + \mu \frac{\phi_{\mathrm{biofilm}}}{\phi_{0} - \phi_{\mathrm{calcite}}} \right) \phi_{\mathrm{biofilm}}\rho_{\mathrm{biofilm}} $
International Research Training Group			MONTANA STATE UNIVERSITY

www.hydrosys.uni-stuttgart.de

Sources & sinks: Solutes and Calcite

 $= -(r_{\rm growth}^{\rm bio} + r_{\rm growth}^{\rm biofilm})/Yield$ $q^{\text{substrate}}$ Substrate: q^{O_2} $= -(r_{\text{growth}}^{\text{bio}} + r_{\text{growth}}^{\text{biofilm}}) \cdot (0.5/Yield)$ Oxygen: $= -r^{\text{urea}} = f(\phi_{\text{biofilm}}, C_{\text{w}}^{\text{urea}}, \text{pH}, C_{\text{w}}^{\text{NH}_4})$ $q^{\rm urea}$ Urea: $q^{\rm NH_{tot}}$ $2r^{\mathrm{urea}}$ Total nitrogen: q^{Ca} Calcium: $r_{\rm diss} - r_{\rm precip} = f(area, saturation state, pH)$ $q^{\mathrm{C}_{\mathrm{tot}}}$ $= r^{\text{urea}} + r_{\text{diss}} - r_{\text{precip}}$ Total carbon: q^{calcite} Calcite: $= r_{\text{precip}} - r_{\text{diss}} = f(area, saturation state, pH)$ International Research

