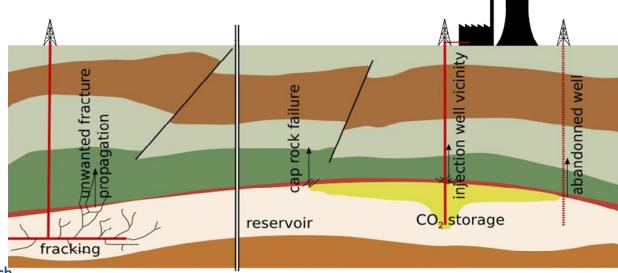


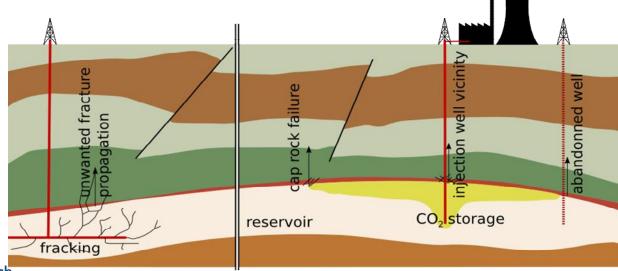
A balance between accuracy and effort for modeling biomineralization

NUPUS Meeting, September 2015 **Johannes Hommel**,


Anozie Ebigbo, Robin Gerlach, Alfred B. Cunningham, Rainer Helmig, Holger Class

Motivation

- Increased use of the subsurface injecting or extracting fluids.
- Exclusive and storage uses require separation.
- → sealing of leakage pathways is important
- Reactive transport models are needed to optimize the sealing.
- But on the relevant field scale, reactive transport models quickly become prohibitively expensive in terms of the computational effort!



www.hydrosys.uni-stuttgart.de

Motivation

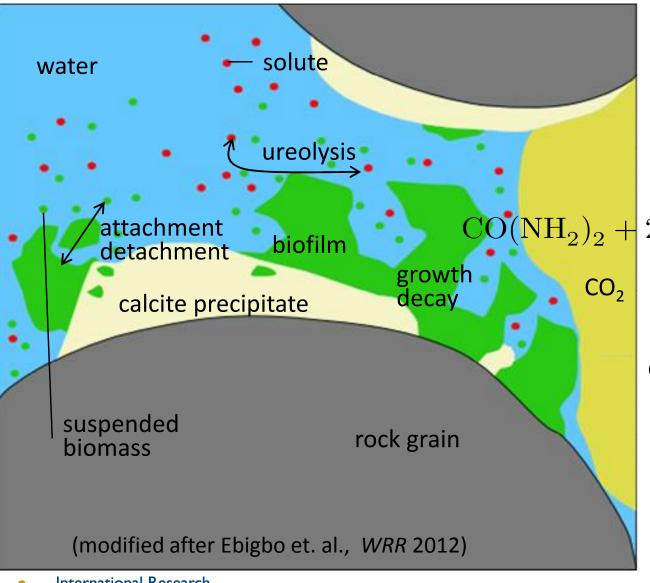
- On the relevant field scale, reactive transport models quickly become prohibitively expensive in terms of the computational effort!
- → Models should be as simple and as fast as possible, but at the same time as accurate as possible!

Outline

Model concept

Methods to reduce computational effort:

- Model simplifications
- Sequential approach


Results

Model concept: Relevant processes

- Two-phase multicomponent transport
- **Biomass**
 - growth / decay
 - attachment / detachment
- Urea hydrolysis

$$CO(NH_2)_2 + 2H_2O \xrightarrow{urease} 2NH_3 + H_2CO_3$$

Precipitation / dissolution of calcite

$$\operatorname{Ca}^{2+} + \operatorname{CO}_3^{2-} \longleftrightarrow \operatorname{CaCO}_3 \downarrow$$

Clogging

$$\phi = \phi_0 - \phi_{\text{biofilm}} - \phi_{\text{calcite}}$$

$$K = K_0 \left(\frac{\phi - \phi_{\text{crit}}}{\phi_0 - \phi_{\text{crit}}} \right)^3$$

Mass balance equations

Mass balance equation for components in both phases:

$$\sum_{\alpha} \frac{\partial}{\partial t} \left(\phi \rho_{\alpha} x_{\alpha}^{\kappa} S_{\alpha} \right) + \nabla \cdot \left(\rho_{\alpha} x_{\alpha}^{\kappa} \mathbf{v}_{\alpha} \right) - \nabla \cdot \left(\rho_{\alpha} \mathbf{D}_{\alpha} \nabla x_{\alpha}^{\kappa} \right) = q^{\kappa}$$

$$\kappa \in \{ \mathsf{w}, \mathsf{C}_{\mathsf{tot}}, \mathsf{O}_{2} \} ; \alpha \in \{ \mathsf{w}, \mathsf{n} \}$$

Mass balance equation of components exclusively in the water phase:

$$\frac{\partial}{\partial t} (\phi \rho_{\mathsf{W}} x_{\alpha}^{\kappa} S_{\mathsf{W}}) + \nabla \cdot (\rho_{\alpha} x_{\mathsf{W}}^{\kappa} \mathbf{v}_{\mathsf{W}}) - \nabla \cdot (\rho_{\mathsf{W}} \mathbf{D}_{\mathsf{W}} \nabla x_{\mathsf{W}}^{\kappa}) = q^{\kappa}$$

$$\kappa \in \{\mathsf{Na}, \; \mathsf{Cl}, \; \mathsf{Ca}, \; \mathsf{bio}, \; \mathsf{substrate}, \; \mathsf{N}_{\mathsf{tot}}, \; \mathsf{urea}\}$$

Mass balance for the immobile components / solid phases:

$$\rho_{\lambda} \frac{\partial \phi_{\lambda}}{\partial t} = q^{\lambda} \qquad \lambda \in \{\text{biofilm, calcite}\}$$

Sources and sinks q^{κ} and q^{λ} are due to reactions or microbial processes.

Outline

Model concept

Methods to reduce computational effort:

- Model simplifications
- Sequential approach

Results

Model simplifications

For the globally implicit approach, the **full complexity model (FC)** and two simplifications are investigated:

Initial biofilm (IB): Instead of an inoculation period, the model is started at a later time with a pre-established biofilm. The component "suspended biomass" is neglected, as suggested in [1], resulting in a reduced number of unknowns.

Simple chemistry (SC): Activities and saturation index are neglected, the precipitation rate is assumed to be equal to the ureolysis rate as in e.g. [2]. This model has the full set of unknowns.

[1] J. Hommel, E. Lauchnor, R. Gerlach, A. B. Cunningham, A. Ebigbo, R. Helmig, H. Class: Investigating the influence of the initial biomass distribution and injection strategies on biofilm-mediated calcite precipitation in porous media, submitted to Transp. Porous Med., 2015 [2] W. K. van Wijngaarden, F. J. Vermolen, G. A. M. Meurs, and C. Vuik: A mathematical model for Biogrout, Comput. Geosci., 2013, 17(3), 463–478, doi:10.1007/s10596-012-9316-0.

Sequential approach: mass balances split into transport and reaction

Mass balance, fully implicit:

$$\sum_{\alpha} \frac{\partial}{\partial t} \left(\phi \rho_{\alpha} x_{\alpha}^{\kappa} S_{\alpha} \right) + \nabla \cdot \left(\rho_{\alpha} x_{\alpha}^{\kappa} \mathbf{v}_{\alpha} \right) - \nabla \cdot \left(\rho_{\alpha} \mathbf{D}_{\alpha} \nabla x_{\alpha}^{\kappa} \right) = q^{\kappa}$$

Mass balance, transport only:

$$\sum_{\alpha} \frac{\partial}{\partial t} \left(\phi \rho_{\alpha} x_{\alpha}^{\kappa} S_{\alpha} \right) + \nabla \cdot \left(\rho_{\alpha} x_{\alpha}^{\kappa} \mathbf{v}_{\alpha} \right) - \nabla \cdot \left(\rho_{\alpha} \mathbf{D}_{\alpha} \nabla x_{\alpha}^{\kappa} \right) = 0$$

→ No reactive sources in the transport subproblem

Mass balance, reaction only:

$$\sum_{\alpha} \frac{\partial}{\partial t} \left(\phi \rho_{\alpha} x_{\alpha}^{\kappa} S_{\alpha} \right) = q^{\kappa} \quad \Rightarrow \text{Only local information is needed in the reaction subproblem}$$

Sequential approach: mass balances split into transport and reaction

Mass balance of solid phases, fully implicit:

$$\rho_{\lambda} \frac{\partial \phi_{\lambda}}{\partial t} = q^{\lambda} \qquad \quad \lambda \in \{ \text{biofilm, calcite} \}$$

Mass balance of solid phases, transport only:

$$\rho_{\lambda} \frac{\partial \phi_{\lambda}}{\partial t} = 0$$

→ Solid phases disappear in the transport subproblem

Mass balance of solid phases, reaction only:

$$\rho_{\lambda} \frac{\partial \phi_{\lambda}}{\partial t} = q^{\lambda}$$

choose

time step

based on

previous

error

evaluate

coupling

exchange

solutions

error,

Sequential approach used

Sequential non-iterative coupling scheme.

$$CE = \max\left(\frac{2|p_{\text{w,transp}} - p_{\text{w,chem}}|}{p_{\text{w,transp}} + p_{\text{w,chem}}}, |x_{\text{w,transp}}^{\kappa} - x_{\text{w,chem}}^{\kappa}|\right)$$

Main time step

Transport subproblem time steps 🗦

eaction subproblem time steps

(Based on literature)

- Advantages:
 - easy to implement
 - suitable for large scale

 - suitable for advection dominated systems like the vicinity of an injection well
- Disadvantages:
 - time step size constraints or increasing error due to the sequential calculation
- Other sequential schemes are yet to be tested

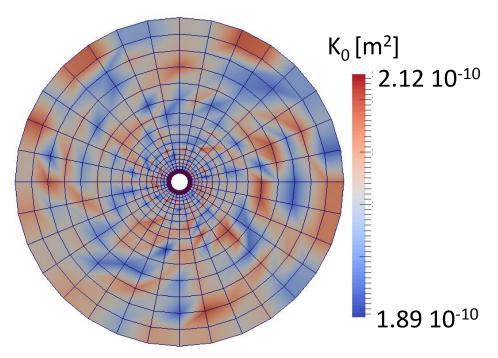
Outline

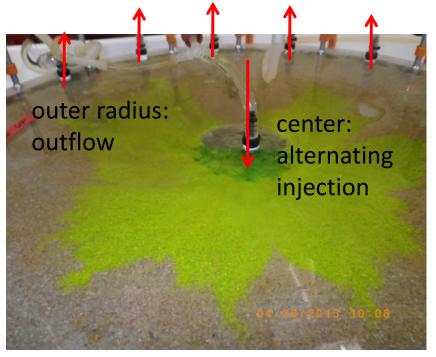
Model concept

Methods to reduce computational effort:

- Model simplifications
- Sequential approach

Results





Test setup: Radial Flow

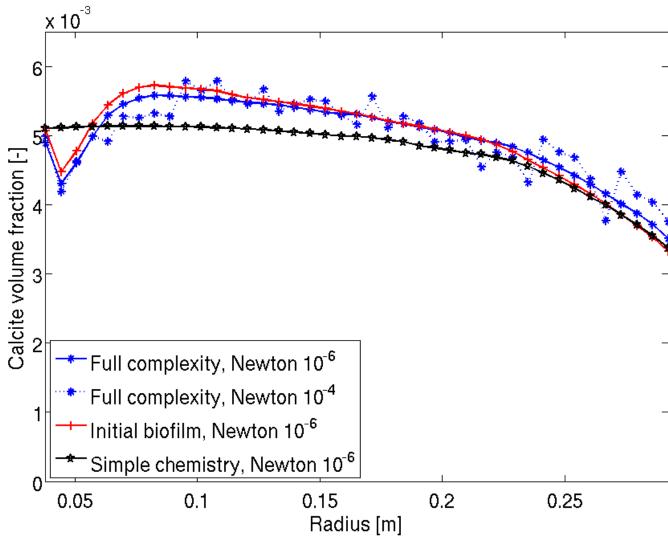
Original experiment shows heterogeneities

→ Using the comparison of homogeneous and heterogeneous case (estimated using [3]) as a base error.

Error:

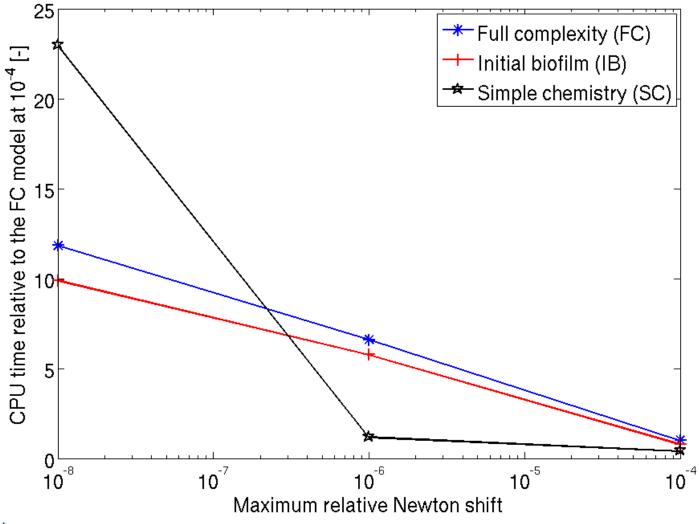
$$\sqrt{\Sigma_{i=1}^{\text{nodes}} (\phi_{\text{c,homo},i} - \phi_{\text{c,hetero},i})^2}$$

→ Error hetero-homo = 0.0033

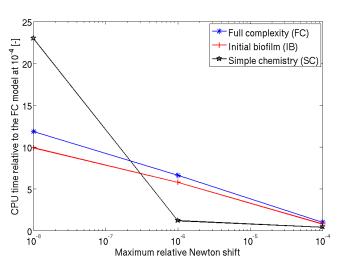


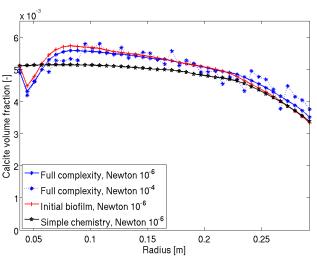
[3] R. F. Carsel, R. S. Parrish: Developing joint probability distributions of soil water retention characteristics, Water Resour. Res., 1988, 24(5), 755-769.

Results: model simplification



Results: model simplification





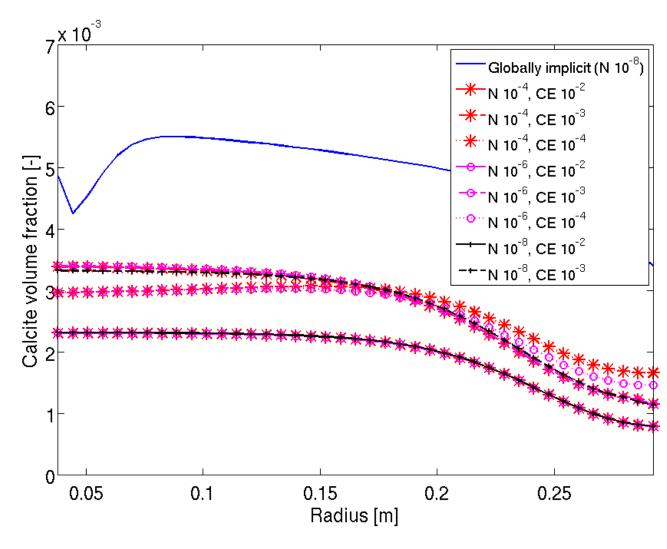
www.hydrosys.uni-stuttgart.de

Results: model simplification

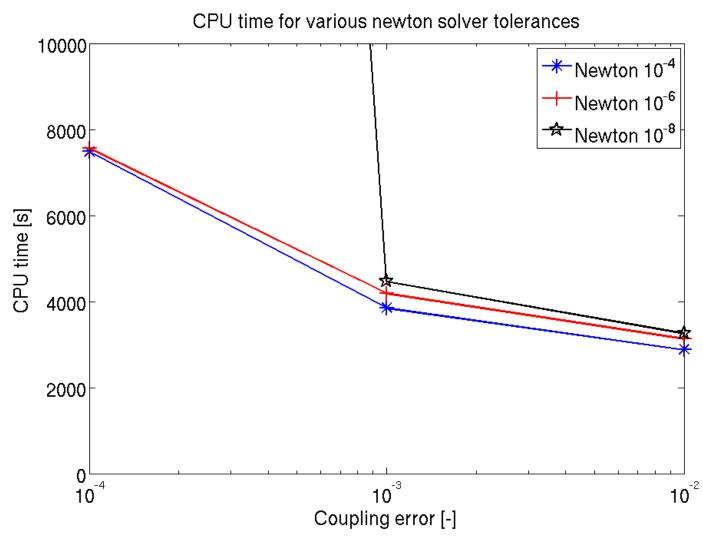
Setup	FC, N 10 ⁻⁶	FC, N 10 ⁻⁴	IB, N 10 ⁻⁶	SC, N 10 ⁻⁶
CPU time [s]	32110	4861	28089	5758
Newton iterations	4971	776	5053	1094
Linear solver iter./ Newton iteration	15.15	6.57	14.91	14.90
Error (φc calcite) *	0.0025	0.0065	0.0039	0.0070

* Error:
$$\sqrt{\sum_{i=1}^{\text{nodes}} (\phi_{c,i} - \phi_{c,\text{ref},i})^2}$$

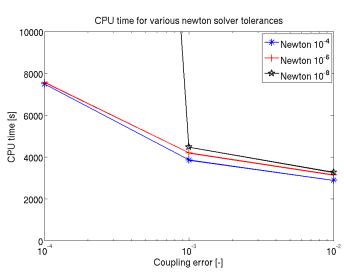
Reference: homogeneous, full complexity, Newton 10⁻⁸, fine discretization (dt and dx)

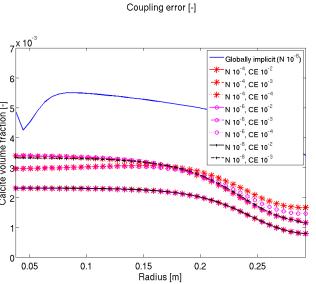

Error hetero-homo = 0.0033

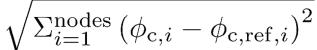
Results: sequential approach



Results: sequential approach



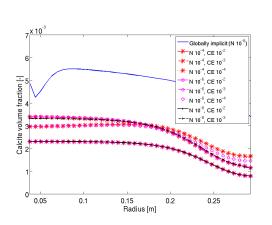


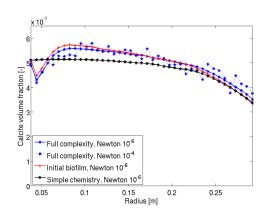

Results: sequential approach

Setup	FC, N 10 ⁻⁶	CE 10 ⁻² N 10 ⁻⁶	CE 10 ⁻² N 10 ⁻⁴	CE 10 ⁻³ N 10 ⁻⁴	CE 10 ⁻⁴ N 10 ⁻⁴
CPU time [s]	32110	3135.6	2882.8	3856.6	7486.4
Main Δt	F00	18	18	30	138
transport Δt	580	171	159	172	439
Newton iter. (transport)	4971	409	327	352	893
Linear solver iter./ Newton iter. (transp.)	15.15	12.33	12.28	12.21	11.21
Error (φc calcite) *	0.0025	0.0770	0.0770	0.0575	0.0568
			. 2		

* Error:

Reference: homogeneous, globally implicit, full complexity, Newton 10⁻⁸, fine discretization



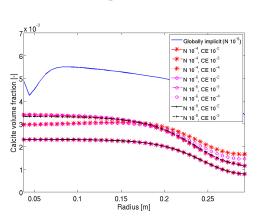


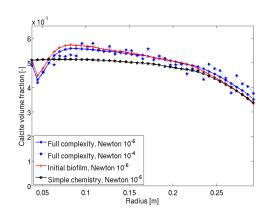
Summary

- Sequential (non-iterative) approach:
 - large errors and underestimation of the precipitated calcite

	CE 10 ⁻² N 10 ⁻⁴	SC, N 10 ⁻⁶	FC, N 10 ⁻⁴
CPU time	2882.8	5758	4861
Error	0.0770	0.0070	0.0065

- Simplification of the globally implicit model:
 - Simple chemistry leads to a significant reduction of CPU time, but it is not generally applicable. (e.g. less calcium than urea)
 - Relaxing the Newton's convergence criteria has similar effects as SC, the results getting "noisy" compared to the reference.
 - Initial biofilm model does not reduce the CPU time significantly.





Summary

- Sequential (non-iterative) approach:
 - large errors and underestimation of the precipitated calcite

	CE 10 ⁻² N 10 ⁻⁴	SC, N 10 ⁻⁶	FC, N 10 ⁻⁴
CPU time	2882.8	5758	4861
Error	0.0770	0.0070	0.0065
Er	ror hete	ro-homo =	0.0033

- Simplification of the globally implicit model:
 - Simple chemistry leads to a significant reduction of CPU time, but it is not generally applicable. (e.g. less calcium than urea)
 - Relaxing the Newton's convergence criteria has similar effects as SC, the results getting "noisy" compared to the reference.
 - Initial biofilm model does not reduce the CPU time significantly.
- To do:
 - Test other sequential approaches and a one-phase biomineralization model.

Key papers / further information

A. Ebigbo, A.J. Philipps, R. Gerlach, R. Helmig, A.B. Cunningham, H. Class, L.H. Spangler: **Darcy-scale modeling of microbially induced carbonate mineral precipitation in sand columns**. Water Resources Research, 2012, 48 WO7519, doi:10.1029/2011WR011714

A.J. Philipps, R. Gerlach, E. Lauchnor, A.C. Mitchell, A.B. Cunningham, L.H. Spangler: **Engineered applications of ureolytic biomineralization: a review**. Biofouling, 2013, 29(6) 715-733, doi:10.1080/08927014.2013.796550

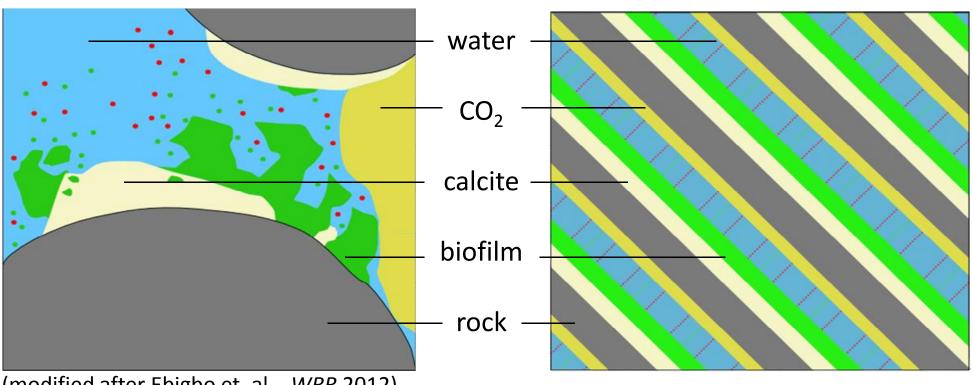
J. Hommel, E. Lauchnor, A.J. Philipps, R. Gerlach, A.B. Cunningham, R. Helmig, A. Ebigbo, H. Class: **A revised model for microbially induced calcite precipitation: improvements and new insights based on recent experiments**. Water Resources Research, 2015, 51(5) 3695-3715, doi:10.1002/2014WR016503

www.hydrosys.uni-stuttgart.de

Thank you for your attention!

NUPUS and DFG are acknowledged for funding

All simulations were done using DuMu^X


For further information on DuMu^X, see:

http://dumux.org/

Model concept: Scale

(modified after Ebigbo et. al., WRR 2012)

averaging Pore scale **REV** scale

Model concept: Important reactions

The bacterium Sporosarcina pasteurii produces the enzyme urease. Urease catalyzes the hydrolysis of urea, which produces ammonia and leads to an increase in pH.

$$CO(NH_2)_2 + 2H_2O \xrightarrow{urease} 2NH_3 + H_2CO_3$$

ureolysis

$$H_2CO_3 \longleftrightarrow HCO_3^- + H^+$$

dissociation of carbonic acid

$$HCO_3^- \longleftrightarrow CO_3^{2-} + H^+$$

dissociation of bicarbonate ion

$$2 NH_4^+ \longleftrightarrow 2 NH_3 + 2 H^+$$

dissociation of ammonia

$$Ca^{2+} + CO_3^{2-} \longleftrightarrow CaCO_3 \downarrow$$

calcite precipitation/dissolution

→ in the presence of calcium ions, the rise in pH due to ureolysis will drive the precipitation of calcite.

Sources & sinks: Biomass

Suspended biomass: $q^{\text{bio}} = r_{\text{growth}}^{\text{bio}} - r_{\text{decay}}^{\text{bio}} - r_{\text{attach}} + r_{\text{detach}}$

 $q^{\text{biofilm}} = r_{\text{growth}}^{\text{biofilm}} - \underline{r_{\text{decay}}^{\text{biofilm}} + r_{\text{attach}} - r_{\text{detach}}}$ Biofilm:

Growth:

 $\begin{array}{lcl} r_{\rm growth}^{\rm bio} & = & \mu \phi S_{\rm w} C_{\rm w}^{\rm bio} \\ r_{\rm growth}^{\rm biofilm} & = & \mu \phi_{\rm biofilm} \rho_{\rm biofilm} \end{array}$

 $= \mu_{\text{max}} Yield \frac{C_{\text{w}}^{\text{substrate}}}{K_{\text{substrate}} + C_{\text{w}}^{\text{substrate}}} \cdot \frac{C_{\text{w}}^{\text{O}_2}}{K_{\text{O}_2} + C_{\text{w}}^{\text{O}_2}}$ μ Growth coefficient:

 $\begin{array}{lll} r_{\rm decay}^{\rm bio} & = & k_{\rm decay}^{\rm bio} \phi S_{\rm w} C_{\rm w}^{\rm bio} \\ r_{\rm decay}^{\rm biofilm} & = & k_{\rm decay}^{\rm biofilm} \phi_{\rm biofilm} \rho_{\rm biofilm} \end{array}$ Decay:

 $r_{\text{attach}} = (c_{\text{a},1}\phi_{\text{biofilm}} + c_{\text{a},2}) C_{\text{w}}^{\text{bio}}\phi S_{\text{w}}$ Attachment:

 $r_{\text{detach}} = \left(c_{\text{d},1} \left(\left|\nabla p_{\text{w}}\right| \phi S_{\text{w}}\right)^{0.58} + \mu \frac{\phi_{\text{biofilm}}}{\phi_{0} - \phi_{\text{calcite}}}\right) \phi_{\text{biofilm}} \rho_{\text{biofilm}}$ Detachment:

Sources & sinks: Solutes and Calcite

Substrate: $q^{\text{substrate}} = -(r_{\text{growth}}^{\text{bio}} + r_{\text{growth}}^{\text{biofilm}})/Yield$

Oxygen: $q^{O_2} = -(r_{\text{growth}}^{\text{bio}} + r_{\text{growth}}^{\text{biofilm}}) \cdot (0.5/Yield)$

Urea: $q^{\text{urea}} = -r^{\text{urea}} = f(\phi_{\text{biofilm}}, C_{\text{w}}^{\text{urea}}, \text{pH}, C_{\text{w}}^{\text{NH}_4})$

Total nitrogen: $q^{\text{NH}_{\text{tot}}} = 2r^{\text{urea}}$

Calcium: $q^{\text{Ca}} = r_{\text{diss}} - r_{\text{precip}} = f(area, saturation state, pH)$

Total carbon: $q^{C_{\text{tot}}} = r^{\text{urea}} + r_{\text{diss}} - r_{\text{precip}}$

Calcite: $q^{\text{calcite}} = r_{\text{precip}} - r_{\text{diss}} = f(area, saturation state, pH)$

