Motivation

With increasing intensity of subsurface use, ensuring separation between different layers with competitive uses becomes more and more important. To ensure separation, sealing technologies such as microbiologically induced calcite precipitation (MICP) are important. This and other applications of MICP are discussed in Phillips et al. (2013).

Model concept

The REV-scale MICP model includes reactive two-phase multi-component transport including two solid phases.

\[
\frac{\partial}{\partial t} \left(\phi_1 \rho_1 \right) = \nabla \cdot \left(\rho_1 \mathbf{u}_1 \right) + \dot{q}_{\text{reactions}}
\]

Relevant processes

Several bio- and geo-chemical processes, in combination with solute transport, are important for MICP:

- two-phase multi-component flow
- processes determining the distribution of biomass:
- growth: \(\tau_{\text{growth}} = \mu \phi_{\text{bacteria}} \)
- decay: \(\tau_{\text{decay}} = \kappa \phi_{\text{bacteria}} \)
- attachment: \(\tau_{\text{attachment}} = (k_a \phi_{\text{bacteria}} + k_a) \phi_{\text{calcite}} \)
- detachment: \(\tau_{\text{detachment}} = k_d (S - \phi_{\text{calcite}}) \rho_{\text{calcite}} + c_{\text{Cl}} \rho_{\text{Cl}} \)
- (bio-) chemical reactions:
 - microbially catalyzed ureolysis: \(\text{CO}(\text{NH}_2)_2 + 2\text{H}_2\text{O} \rightarrow 2\text{NH}_3 + \text{H}_2\text{CO}_3 \)
 - influence of NH\(_3\) on the pH: \(\text{NH}_3 + \text{H}^+ \rightarrow \text{NH}_4^+ \) increase in pH,
 - precipitation (and dissolution) of calcite: \(\text{Ca}^{2+} + \text{CO}_3^{2-} \rightarrow \text{CaCO}_3 \)
 - precipitation: \(\tau_{\text{precipitation}} = k_{\text{precipitation}} S \phi_{\text{calcite}} \)

\[
\phi = \phi_0 - \phi_{\text{calcite}} - \phi_{\text{bacteria}} \Rightarrow K = K_c \left(\frac{S}{S_c} \right)^n
\]

Setup

The setup is the bicycle rim experiment described in Hommel et al. (2015b).

- compare heterogeneous and homogeneous case
- relate the error due to assuming homogeneity to the model simplifications

Results

The full complexity model (FC) and two simplifications are investigated:

- Initial biofilm (IB): Instead of an inoculation period, the model is started at a later time with a pre-established biofilm. The component suspended biomass is neglected (Hommel et al., 2015a), resulting in a reduced number of unknowns.
- Simple chemistry (SC): Activities and saturation index are neglected, the precipitation rate is assumed to be equal to the ureolysis rate as in e.g. van Wijngaarden et al. (2013), \(\tau_{\text{urea}} = \tau_{\text{calcite}} \). This model has the full set of unknowns, but the geochemistry is neglected.

Model simplification

Table 1 : Comparison of the simplified models. Reference error homogeneous to heterogeneous permeability: 0.0033.

<table>
<thead>
<tr>
<th>Model</th>
<th>CPU time [s]</th>
<th>Error Newton it. Lin. it. / N. it</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC, N 10(^{-6})</td>
<td>32110 s</td>
<td>0.0025</td>
</tr>
<tr>
<td>FC, N 10(^{-4})</td>
<td>4861 s</td>
<td>0.0065</td>
</tr>
<tr>
<td>FC, N 10(^{-6})</td>
<td>5758 s</td>
<td>0.0070</td>
</tr>
<tr>
<td>SC, N 10(^{-6})</td>
<td>2001 s</td>
<td>0.0104</td>
</tr>
<tr>
<td>IB, N 10(^{-6})</td>
<td>29089 s</td>
<td>0.0040</td>
</tr>
</tbody>
</table>

- Relaxing the Newton convergence criterion is a simple but effective measure to reduce CPU time.
- For the given setup, the CPU time of the simple chemistry model (at N 10\(^{-4}\)) is comparable to relaxing the Newton convergence criterion.
- The simple chemistry model could be simplified further, neglecting additionally the components suspended biomass (see IB model) and Na\(^+\), Cl\(^-\), and NH\(_4^+\), as the geochemistry is neglected in this setup.

Literature

